1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
//! Lazy tiled image.
//!
//! This supports OSM-style "tiled" images, but not all of the tiles have to be present. If a tile
//! is not present, a default pixel is returned. The tile is allocated with the first call to a
//! mutating operation.
use std::{
fs::File,
io::{BufWriter, Write},
path::Path,
};
use color_eyre::eyre::Result;
use fnv::FnvHashMap;
use image::{
codecs::png::{CompressionType, FilterType, PngEncoder},
ColorType, ImageBuffer, ImageEncoder, Pixel, RgbaImage,
};
use num_traits::Zero;
use rayon::iter::{IntoParallelIterator, ParallelIterator};
pub const TILE_HEIGHT: u64 = 256;
pub const TILE_WIDTH: u64 = 256;
type TileIndex = (u64, u64);
/// Main "lazy image buffer" struct.
#[derive(Debug, Clone)]
pub struct TileLayer<P: Pixel> {
tiles: FnvHashMap<TileIndex, ImageBuffer<P, Vec<P::Subpixel>>>,
default_pixel: P,
}
impl<P: Pixel> TileLayer<P> {
pub fn from_pixel(pixel: P) -> Self {
TileLayer {
tiles: Default::default(),
default_pixel: pixel,
}
}
pub fn enumerate_tiles(
&self,
) -> impl Iterator<Item = (u64, u64, &ImageBuffer<P, Vec<P::Subpixel>>)> {
self.tiles.iter().map(|((x, y), t)| (*x, *y, t))
}
pub fn tile_mut(&mut self, tile_x: u64, tile_y: u64) -> &mut ImageBuffer<P, Vec<P::Subpixel>> {
self.tiles.entry((tile_x, tile_y)).or_insert_with(|| {
ImageBuffer::from_pixel(TILE_WIDTH as u32, TILE_HEIGHT as u32, self.default_pixel)
})
}
/// Enumerate all pixels that are explicitely set in this layer.
pub fn enumerate_pixels(&self) -> impl Iterator<Item = (u64, u64, &P)> {
self.tiles.iter().flat_map(|((tx, ty), tile)| {
tile.enumerate_pixels().map(move |(x, y, p)| {
(
u64::from(x) + tx * TILE_WIDTH,
u64::from(y) + ty * TILE_HEIGHT,
p,
)
})
})
}
pub fn pixels(&self) -> impl Iterator<Item = &P> {
self.enumerate_pixels().map(|x| x.2)
}
pub fn tile_count(&self) -> usize {
self.tiles.len()
}
/// Copies the non-zero pixels from `source` to `self`.
///
/// A zero-pixel is identified by comparing all its channels' values with `Zero::zero()`. If
/// any channel is non-zero, the pixel is considered non-zero and is copied.
///
/// The top-left pixel of `source` is copied to `(x, y)`.
///
/// This method is more efficient than repeatedly calling [`get_pixel_mut`], as it groups
/// pixels by tile and only does one tile lookup.
pub fn blit_nonzero(&mut self, x: u64, y: u64, source: &ImageBuffer<P, Vec<P::Subpixel>>) {
let zero = zero_pixel::<P>();
let source_width = u64::from(source.width());
let source_height = u64::from(source.height());
for tx in x / TILE_WIDTH..=(x + source_width) / TILE_WIDTH {
for ty in y / TILE_HEIGHT..=(y + source_height) / TILE_HEIGHT {
let tile = self.tile_mut(tx, ty);
let offset_x = (tx * TILE_WIDTH).saturating_sub(x);
let offset_y = (ty * TILE_HEIGHT).saturating_sub(y);
let local_min_x = x.saturating_sub(tx * TILE_WIDTH);
let local_min_y = y.saturating_sub(ty * TILE_HEIGHT);
let local_max_x = TILE_WIDTH.min(x + source_width - tx * TILE_WIDTH);
let local_max_y = TILE_HEIGHT.min(y + source_height - ty * TILE_HEIGHT);
// Keep x in the inner loop for better cache locality!
for (y, source_y) in (local_min_y..local_max_y).zip(offset_y..) {
for (x, source_x) in (local_min_x..local_max_x).zip(offset_x..) {
let pixel = source
.get_pixel(source_x.try_into().unwrap(), source_y.try_into().unwrap());
if pixel.channels() != zero.channels() {
*tile.get_pixel_mut(x.try_into().unwrap(), y.try_into().unwrap()) =
*pixel;
}
}
}
}
}
}
}
impl<P> TileLayer<P>
where
P: Pixel + Send,
P::Subpixel: Send,
{
pub fn into_parallel_tiles(
self,
) -> impl ParallelIterator<Item = (u64, u64, ImageBuffer<P, Vec<P::Subpixel>>)> {
IntoParallelIterator::into_par_iter(self.tiles).map(|((x, y), t)| (x, y, t))
}
}
pub fn compress_png<P: AsRef<Path>>(image: &RgbaImage, path: P) -> Result<()> {
let outstream = BufWriter::new(File::create(path)?);
compress_png_stream(image, outstream)
}
pub fn compress_png_stream<W: Write>(image: &RgbaImage, outstream: W) -> Result<()> {
let encoder =
PngEncoder::new_with_quality(outstream, CompressionType::Best, FilterType::Adaptive);
encoder.write_image(image, image.width(), image.height(), ColorType::Rgba8)?;
Ok(())
}
pub fn compress_png_as_bytes(image: &RgbaImage) -> Result<Vec<u8>> {
let mut buffer = Vec::new();
compress_png_stream(image, &mut buffer)?;
Ok(buffer)
}
fn zero_pixel<P: Pixel>() -> P {
let zeroes = vec![Zero::zero(); P::CHANNEL_COUNT as usize];
*P::from_slice(&zeroes)
}
|